Back to Search
Start Over
RadArnomaly: Protecting Radar Systems from Data Manipulation Attacks
- Source :
- Sensors, Vol 22, Iss 11, p 4259 (2022)
- Publication Year :
- 2022
- Publisher :
- MDPI AG, 2022.
-
Abstract
- Radar systems are mainly used for tracking aircraft, missiles, satellites, and watercraft. In many cases, information regarding the objects detected by a radar system is sent to, and used by, a peripheral consuming system, such as a missile system or a graphical user interface used by an operator. Those systems process the data stream and make real-time operational decisions based on the data received. Given this, the reliability and availability of information provided by radar systems have grown in importance. Although the field of cyber security has been continuously evolving, no prior research has focused on anomaly detection in radar systems. In this paper, we present an unsupervised deep-learning-based method for detecting anomalies in radar system data streams; we take into consideration the fact that a data stream created by a radar system is heterogeneous, i.e., it contains both numerical and categorical features with non-linear and complex relationships. We propose a novel technique that learns the correlation between numerical features and an embedding representation of categorical features in an unsupervised manner. The proposed technique, which allows for the detection of the malicious manipulation of critical fields in a data stream, is complemented by a timing-interval anomaly-detection mechanism proposed for the detection of message-dropping attempts. Real radar system data were used to evaluate the proposed method. Our experiments demonstrated the method’s high detection accuracy on a variety of data-stream manipulation attacks (an average detection rate of 88% with a false -alarm rate of 1.59%) and message-dropping attacks (an average detection rate of 92% with a false-alarm rate of 2.2%).
- Subjects :
- radar system
anomaly detection
deep learning
Chemical technology
TP1-1185
Subjects
Details
- Language :
- English
- ISSN :
- 14248220
- Volume :
- 22
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Sensors
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.796816c59e14db2b8e85d7d18c1e44a
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/s22114259