Back to Search Start Over

Early Detection of Heart Failure with Autonomous AI-Based Model Using Chest Radiographs: A Multicenter Study

Authors :
Emiliano Garza-Frias
Parisa Kaviani
Lina Karout
Roshan Fahimi
Seyedehelaheh Hosseini
Preetham Putha
Manoj Tadepalli
Sai Kiran
Charu Arora
Dennis Robert
Bernardo Bizzo
Keith J. Dreyer
Mannudeep K. Kalra
Subba R. Digumarthy
Source :
Diagnostics, Vol 14, Iss 15, p 1635 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The opportunistic use of radiological examinations for disease detection can potentially enable timely management. We assessed if an index created by an AI software to quantify chest radiography (CXR) findings associated with heart failure (HF) could distinguish between patients who would develop HF or not within a year of the examination. Our multicenter retrospective study included patients who underwent CXR without an HF diagnosis. We included 1117 patients (age 67.6 ± 13 years; m:f 487:630) that underwent CXR. A total of 413 patients had the CXR image taken within one year of their HF diagnosis. The rest (n = 704) were patients without an HF diagnosis after the examination date. All CXR images were processed with the model (qXR-HF, Qure.AI) to obtain information on cardiac silhouette, pleural effusion, and the index. We calculated the accuracy, sensitivity, specificity, and area under the curve (AUC) of the index to distinguish patients who developed HF within a year of the CXR and those who did not. We report an AUC of 0.798 (95%CI 0.77–0.82), accuracy of 0.73, sensitivity of 0.81, and specificity of 0.68 for the overall AI performance. AI AUCs by lead time to diagnosis (

Details

Language :
English
ISSN :
20754418
Volume :
14
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Diagnostics
Publication Type :
Academic Journal
Accession number :
edsdoj.7957637257ab42d4998cd943a66ae6ca
Document Type :
article
Full Text :
https://doi.org/10.3390/diagnostics14151635