Back to Search Start Over

Whole genome sequencing of a novel, dichloromethane-fermenting Peptococcaceae from an enrichment culture

Authors :
Sophie I. Holland
Richard J. Edwards
Haluk Ertan
Yie Kuan Wong
Tonia L. Russell
Nandan P. Deshpande
Michael J. Manefield
Matthew Lee
Source :
PeerJ, Vol 7, p e7775 (2019)
Publication Year :
2019
Publisher :
PeerJ Inc., 2019.

Abstract

Bacteria capable of dechlorinating the toxic environmental contaminant dichloromethane (DCM, CH2Cl2) are of great interest for potential bioremediation applications. A novel, strictly anaerobic, DCM-fermenting bacterium, “DCMF”, was enriched from organochlorine-contaminated groundwater near Botany Bay, Australia. The enrichment culture was maintained in minimal, mineral salt medium amended with dichloromethane as the sole energy source. PacBio whole genome SMRTTM sequencing of DCMF allowed de novo, gap-free assembly despite the presence of cohabiting organisms in the culture. Illumina sequencing reads were utilised to correct minor indels. The single, circularised 6.44 Mb chromosome was annotated with the IMG pipeline and contains 5,773 predicted protein-coding genes. Based on 16S rRNA gene and predicted proteome phylogeny, the organism appears to be a novel member of the Peptococcaceae family. The DCMF genome is large in comparison to known DCM-fermenting bacteria. It includes an abundance of methyltransferases, which may provide clues to the basis of its DCM metabolism, as well as potential to metabolise additional methylated substrates such as quaternary amines. Full annotation has been provided in a custom genome browser and search tool, in addition to multiple sequence alignments and phylogenetic trees for every predicted protein, http://www.slimsuite.unsw.edu.au/research/dcmf/.

Details

Language :
English
ISSN :
21678359
Volume :
7
Database :
Directory of Open Access Journals
Journal :
PeerJ
Publication Type :
Academic Journal
Accession number :
edsdoj.7955417b1a984101a1b2b73638c64204
Document Type :
article
Full Text :
https://doi.org/10.7717/peerj.7775