Back to Search Start Over

Robust Normalized Least Mean Absolute Third Algorithms

Authors :
Kui Xiong
Shiyuan Wang
Badong Chen
Source :
IEEE Access, Vol 7, Pp 10318-10330 (2019)
Publication Year :
2019
Publisher :
IEEE, 2019.

Abstract

This paper addresses the stability issues of the least mean absolute third (LMAT) algorithm using the normalization based on the third order in the estimation error. A novel robust normalized least mean absolute third (RNLMAT) algorithm is therefore proposed to be stable for all statistics of the input, noise, and initial weights. For further improving the filtering performance of RNLMAT in different noises and initial conditions, the variable step-size RNLMAT (VSSRNLMAT) and the switching RNLMAT (SWRNLMAT) algorithms are proposed using the statistics of the estimation error and a switching method, respectively. The filtering performance of RNLMAT is improved by VSSRNLMAT and SWRNLMAT at the expense of affordable computational cost. RNLMAT with less computational complexity than other normalized adaptive filtering algorithms, can provide better filtering accuracy and robustness against impulsive noises. The steady-state performance of RNLMAT and SWRNLMAT in terms of the excess mean-square error is performed for theoretical analysis. Simulations conducted in system identification under different noise environments confirm the theoretical results and the superiorities of the proposed algorithms from the aspects of filtering accuracy and robustness against large outliers.

Details

Language :
English
ISSN :
21693536
Volume :
7
Database :
Directory of Open Access Journals
Journal :
IEEE Access
Publication Type :
Academic Journal
Accession number :
edsdoj.78ecba8185884f6392371140eb253e67
Document Type :
article
Full Text :
https://doi.org/10.1109/ACCESS.2019.2891549