Back to Search Start Over

The Effect of Nitrogen Flow Rate on the Loadbearing Capacity from Nano- to Macro-Hardness of Austenitic Stainless Steels Magnetron Sputtering-Coated with Stainless Steel Films

Authors :
Carlos M. Garzón
Giovanny A. Vergara
Abel A. C. Recco
Source :
Materials Research, Vol 23, Iss 3 (2020)
Publication Year :
2020
Publisher :
Associação Brasileira de Metalurgia e Materiais (ABM); Associação Brasileira de Cerâmica (ABC); Associação Brasileira de Polímeros (ABPol), 2020.

Abstract

UNS S31603 stainless steel (SS) substrates were covered by reactive magnetron-sputtering with protective SS coatings of the same steel specification. A mechanical characterization study (through nano-, micro- and macro-hardness tests) of samples obtained under two different sputtering conditions and varying the N2 gas flow rate was carried out. This contribution aimed at appraising the effects of varying the nitrogen flow rate on hardness, elastic modulus, and susceptibility to indentation-induced crack formation of the coated SSs. Nitrogen-free samples displayed body-centered cubic (BCC) films with 9.0-9.4 GPa hardness and 203-206 GPa elastic modulus, while their susceptibility to indentation-induced cracking varied between superior and moderated among the two sets of sputtering conditions studied. Samples alloyed with 4-6 N at-% displayed a predominantly face-centered cubic (FCC) structure, 9.4 GPa hardness, 196-218 GPa elastic modulus, and superior resistance to crack formation. Samples with 11.5-22.0 N at-% were fully composed of the FCC structure, displayed 12.4-15.2 GPa hardness, 188-193 GPa elastic modulus, and moderated resistance to indentation-induced crack formation. Samples with 47.0 N at-% displayed FCC compound nitride structure, for which hardness and elastic modulus were 8.1 GPa and 139 GPa, respectively. These samples displayed low resistance to crack formation.

Details

Language :
English
ISSN :
15161439 and 19805373
Volume :
23
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Materials Research
Publication Type :
Academic Journal
Accession number :
edsdoj.78cf710ab6dd4fa181ad670c09d99f3c
Document Type :
article
Full Text :
https://doi.org/10.1590/1980-5373-mr-2019-0453