Back to Search
Start Over
Insights into the Synthesis Parameters Effects on the Structural, Morphological, and Magnetic Properties of Copper Oxide Nanoparticles
- Source :
- Materials, Vol 16, Iss 9, p 3426 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- The present study aims at the integration of the “oxalic conversion” route into “green chemistry” for the synthesis of copper oxide nanoparticles (CuO-NPs) with controllable structural, morphological, and magnetic properties. Two oxalate-containing precursors (H2C2O4.2H2O and (NH4)2C2O4.H2O) and different volume ratios of a mixed water/glycerol solvent were tested. First, the copper oxalates were synthesized and then subjected to thermal decomposition in air at 400 °C to produce the CuO powders. The purity of the samples was confirmed by X-ray powder diffraction (XRPD), and the crystallite sizes were calculated using the Scherrer method. The transmission electron microscopy (TEM) images revealed oval-shaped CuO-NPs, and the scanning electron microscopy (SEM) showed that morphological features of copper oxalate precursors and their corresponding oxides were affected by the glycerol (V/V) ratio as well as the type of C2O42− starting material. The magnetic properties of CuO-NPs were determined by measuring the temperature-dependent magnetization and the hysteresis curves at 5 and 300 K. The obtained results indicate the simultaneous coexistence of dominant antiferromagnetic and weak ferromagnetic behavior.
- Subjects :
- CuO nanoparticles
oxalate precursor route
X-ray powder diffraction
TEM and SEM observations
magnetic properties
Technology
Electrical engineering. Electronics. Nuclear engineering
TK1-9971
Engineering (General). Civil engineering (General)
TA1-2040
Microscopy
QH201-278.5
Descriptive and experimental mechanics
QC120-168.85
Subjects
Details
- Language :
- English
- ISSN :
- 19961944
- Volume :
- 16
- Issue :
- 9
- Database :
- Directory of Open Access Journals
- Journal :
- Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.78c9b6dc862b47e0bed9ff5b855ac161
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/ma16093426