Back to Search Start Over

Partial Substation of Organic Fertilizer With Chemical Fertilizer Improves Soil Biochemical Attributes, Rice Yields, and Restores Bacterial Community Diversity in a Paddy Field

Authors :
Anas Iqbal
Liang He
Izhar Ali
Pengli Yuan
Abdullah Khan
Zhang Hua
Shanqing Wei
Ligeng Jiang
Source :
Frontiers in Plant Science, Vol 13 (2022)
Publication Year :
2022
Publisher :
Frontiers Media S.A., 2022.

Abstract

Conventional farming systems are highly reliant on chemical fertilizers (CFs), which adversely affect soil quality, crop production and the environment. One of the major current challenges of current agriculture is finding ways to increase soil health and crop yield sustainably. Manure application as a substitute for CF is an alternative fertilization strategy for maintaining soil health and biodiversity. However, little is known about the complex response of soil bacterial communities and soil nutrients to manure and CFs application. This study reports the response of soil nutrients, rice yield, and soil microbial community structure to 2 years of continuous manure and CFs application. The study consisted of six treatments: no N fertilizer control (Neg-Con); 100% CF (Pos-Con); 60% cattle manure (CM) + 40% CF (High-CM); 30% CM + 70% CF (Low-CM); 60% poultry manure (PM) + 40% CF (High-PM), and 30% PM + 70% CF (Low-PM). We used high-throughput sequencing of 16S ribosomal RNA gene amplicons to characterize the soil bacterial communities. Results revealed that the addition of manure significantly altered the soil bacterial community composition and structure; and enhanced the relative abundance of phyla Proteobacteria, Chloroflexi, Firmicutes, Acidobacteria, and Planctomycetes. Organic fertilizer treatments, particularly high CM and PM had the highest measured soil bacterial diversity of all treatments. Similarly, integrated application of manure and CFs increased the soil biochemical traits [i.e., pH, total N (TN), soil organic C (SOC), microbial biomass N (MBN), and microbial biomass C (MBC)] and rice grain yield. Average increases in SOC, TN, MBN, and MBC were 43.66, 31.57, 24.34, and 49.45%, respectively, over the years in the High-PM compared with Pos-Con. Redundancy analysis showed that the dominant bacteria phyla were correlated with soil pH, SOC, TN, and microbial biomass, but the relative abundance of Proteobacteria was strongly correlated with environmental factors such as soil pH, SOC, TN, and MBC. We employed a structural equation model to examine the relationship between microbial biomass, soil nutrients and grain yield among treatments. This analysis supported the hypothesis that soil nutrient content and availability directly affect rice grain yield while soil bacteria indirectly affect grain yield through microbial biomass production and nutrient levels. Overall, the findings of this research suggest that the integrated application of CF and manure is a better approach for improving soil health and rice yield.

Details

Language :
English
ISSN :
1664462X
Volume :
13
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.78ba997701a34adb8411cca1205f0d27
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2022.895230