Back to Search Start Over

Identification of Chimeric Repressors that Confer Salt and Osmotic Stress Tolerance in Arabidopsis

Authors :
Daisuke Kazama
Masateru Itakura
Takamitsu Kurusu
Nobutaka Mitsuda
Masaru Ohme-Takagi
Yuichi Tada
Source :
Plants, Vol 2, Iss 4, Pp 769-785 (2013)
Publication Year :
2013
Publisher :
MDPI AG, 2013.

Abstract

We produced transgenic Arabidopsis plants that express chimeric genes for transcription factors converted to dominant repressors, using Chimeric REpressor gene-Silencing Technology (CRES-T), and evaluated the salt tolerance of each line. The seeds of the CRES-T lines for ADA2b, Msantd, DDF1, DREB26, AtGeBP, and ATHB23 exhibited higher germination rates than Wild type (WT) and developed rosette plants under up to 200 mM NaCl or 400 mM mannitol. WT plants did not grow under these conditions. In these CRES-T lines, the expression patterns of stress-related genes such as RD29A, RD22, DREB1A, and P5CS differed from those in WT plants, suggesting the involvement of the six transcription factors identified here in the stress response pathways regulated by the products of these stress-related genes. Our results demonstrate additional proof that CRES-T is a superior tool for revealing the function of transcription factors.

Details

Language :
English
ISSN :
22237747
Volume :
2
Issue :
4
Database :
Directory of Open Access Journals
Journal :
Plants
Publication Type :
Academic Journal
Accession number :
edsdoj.78325182fda4c689e0147a4cdd37541
Document Type :
article
Full Text :
https://doi.org/10.3390/plants2040769