Back to Search Start Over

Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia

Gradient-concentration RuCo electrocatalyst for efficient and stable electroreduction of nitrate into ammonia

Authors :
Xinhong Chen
Yumeng Cheng
Bo Zhang
Jia Zhou
Sisi He
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Electrocatalytic nitrate reduction to ammonia holds great promise for developing green technologies for electrochemical ammonia energy conversion and storage. Considering that real nitrate resources often exhibit low concentrations, it is challenging to achieve high activity in low-concentration nitrate solutions due to the competing reaction of the hydrogen evolution reaction, let alone considering the catalyst lifetime. Herein, we present a high nitrate reduction performance electrocatalyst based on a Co nanosheet structure with a gradient dispersion of Ru, which yields a high NH3 Faraday efficiency of over 93% at an industrially relevant NH3 current density of 1.0 A/cm2 in 2000 ppm NO3 - electrolyte, while maintaining good stability for 720 h under −300 mA/cm2. The electrocatalyst maintains high activity even in 62 ppm NO3 - electrolyte. Electrochemical studies, density functional theory, electrochemical in situ Raman, and Fourier-transformed infrared spectroscopy confirm that the gradient concentration design of the catalyst reduces the reaction energy barrier to improve its activity and suppresses the catalyst evolution caused by the expansion of the Co lattice to enhance its stability. The gradient-driven design in this work provides a direction for improving the performance of electrocatalytic nitrate reduction to ammonia.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.780555fc3ed54f8da16ab3388c8d071c
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-50670-w