Back to Search
Start Over
On locally compact semitopological O-bisimple inverse ω-semigroups
- Source :
- Topological Algebra and its Applications, Vol 6, Iss 1, Pp 77-101 (2018)
- Publication Year :
- 2018
- Publisher :
- De Gruyter, 2018.
-
Abstract
- We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω- semigroups with compact maximal subgroups. In particular, we show that a Hausdorff locally compact semitopological O-bisimple inverse ω-semigroup with a compact maximal subgroup is either compact or it is a topological sum of its H-classes. We describe the structure of Hausdorff locally compact semitopological O-bisimple inverse ω-semigroups with a monothetic maximal subgroups. We show the following dichotomy: a T1 locally compact semitopological Reilly semigroup (B(Z+, θ)0, τ) over the additive group of integers Z+, with adjoined zero and with a non-annihilating homomorphism is either compact or discrete. At the end we establish some properties of the remainder of the closure of the discrete Reilly semigroup B(Z+, θ) in a semitopological semigroup.
Details
- Language :
- English
- ISSN :
- 22993231
- Volume :
- 6
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Topological Algebra and its Applications
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.77fc180af7b14113a5dd6794ecc241b5
- Document Type :
- article
- Full Text :
- https://doi.org/10.1515/taa-2018-0008