Back to Search Start Over

Carbon and Nitrogen Dynamics, and CO2 Efflux in the Calcareous Sandy Loam Soil Treated with Chemically Modified Organic Amendments

Authors :
Ahmed Mohammed-Nour
Mohamed Al-Sewailem
Ahmed H. El-Naggar
Mohamed H. El-Saeid
Anwar A. Aly
Jamal Elfaki
Source :
Molecules, Vol 26, Iss 16, p 4707 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

In Saudi Arabia, more than 335,000 tons of cow manure is produced every year from dairy farming. However, the produced cow manure is usually added to the agricultural soils as raw or composted manure; significant nitrogen losses occur during the storage, handling, and application of the raw manure. The recovery of ammonia from cow manure through thermochemical treatments is a promising technique to obtain concentrated nitrogen fertilizer and reducing nitrogen losses from raw manure. However, the byproduct effluents from the recovery process are characterized by different chemical properties from the original raw manure; thus, its impact as soil amendments on the soil carbon and nitrogen dynamics is unknown. Therefore, a 90-day incubation experiment was conducted to study the impact of these effluents on CO2 efflux, organic C, microbial biomass C, available NH4+, and NO3− when added to agricultural soil. In addition to the two types of effluents (produced at pH 9 and pH 12), raw cow manure (CM), composted cow manure (CMC), cow manure biochar (CMB), and control were used for comparison. The application of CM resulted in a considerable increase in soil available nitrogen and CO2 efflux, compared to other treatments. Cow manure biochar showed the lowest CO2 efflux. Cumulative CO2 effluxes of cow manure effluents were lower than CM; this is possibly due to the relatively high C:N ratio of manure effluent. The content of P, Fe, Cu, Zn, and Mn decreased as incubation time increased. Soil microbial biomass C for soil treated with cow manure effluents (pH 12 and 7) was significantly higher than the rest of the soil amendments and control.

Details

Language :
English
ISSN :
14203049
Volume :
26
Issue :
16
Database :
Directory of Open Access Journals
Journal :
Molecules
Publication Type :
Academic Journal
Accession number :
edsdoj.77e44dfb6e2d432c8fb5995ff7f3723d
Document Type :
article
Full Text :
https://doi.org/10.3390/molecules26164707