Back to Search Start Over

Biogenic ZnO nanoparticles: a study of blueshift of optical band gap and photocatalytic degradation of reactive yellow 186 dye under direct sunlight

Authors :
Singh Jagpreet
Kaur Sukhmeen
Kaur Gaganpreet
Basu Soumen
Rawat Mohit
Source :
Green Processing and Synthesis, Vol 8, Iss 1, Pp 272-280 (2019)
Publication Year :
2019
Publisher :
De Gruyter, 2019.

Abstract

Synthesis of nanoparticles (NPs) using plant extracts has been suggested as an environmentally friendly alternative to chemical synthesis of semiconductor NPs. In the present study, ZnO NPs were synthesized by a simple and cost-effective method using Coriandrum sativum leaf extract and zinc acetate as precursors. The as-synthesized ZnO NPs were characterized by UV-visible spectroscopy, transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and energy dispersive X-ray (EDX) analysis. The results confirmed the formation of ZnO NPs with a wurtzite structure, spherical shape and average particle size of 24 nm. The photocatalytic degradation of reactive yellow 186 (RY 186) dye was carried out under direct sunlight irradiation and its degradation efficiency and apparent rate constant (K’app) of reaction were calculated to be 93.38%, and 0.0019 min−1, respectively. The optical band gap value of the as-synthesized ZnO NPs was found to be 3.4 eV, which indicates the presence of blueshift. Owing to the presence of blueshift and a wide band gap of synthesized biogenic ZnO NPs, the overall absorption of sunlight irradiation will be enhanced, which leads to higher degradation efficiency of the dye. The current study thus highlights the optical band gap properties of biogenic ZnO NPs and their significance as a heterogeneous catalyst for the purification of polluted water.

Details

Language :
English
ISSN :
21919550
Volume :
8
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Green Processing and Synthesis
Publication Type :
Academic Journal
Accession number :
edsdoj.77b0706173e4cb7908178e6f156b619
Document Type :
article
Full Text :
https://doi.org/10.1515/gps-2018-0084