Back to Search Start Over

Integrated analysis and validation of ferroptosis-related genes and immune infiltration in acute myocardial infarction

Authors :
Xinyu Wu
Jingru Li
Shengjie Chai
Chaguo Li
Si Lu
Suli Bao
Shuai Yu
Hao Guo
Jie He
Yunzhu Peng
Huang Sun
Luqiao Wang
Source :
BMC Cardiovascular Disorders, Vol 24, Iss 1, Pp 1-17 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Acute myocardial infarction (AMI) is indeed a significant cause of mortality and morbidity in individuals with coronary heart disease. Ferroptosis, an iron-dependent cell death, is characterized by the accumulation of intracellular lipid peroxides, which is implicated in cardiomyocyte injury. This study aims to identify biomarkers that are indicative of ferroptosis in the context of AMI, and to examine their potential roles in immune infiltration. Methods Firstly, the GSE59867 dataset was used to identify differentially expressed ferroptosis-related genes (DE-FRGs) in AMI. We then performed gene ontology (GO) and functional enrichment analysis on these DE-FRGs. Secondly, we analyzed the GSE76591 dataset and used bioinformatic methods to build ceRNA networks. Thirdly, we identified hub genes in protein–protein interaction (PPI) network. After obtaining the key DE-FRGs through the junction of hub genes with ceRNA and least absolute shrinkage and selection operator (LASSO). ImmucellAI was applied to estimate the immune cell infiltration in each sample and examine the relationship between key DE-FRGs and 24 immunocyte subsets. The diagnostic performance of these genes was further evaluated using the receiver operating characteristic (ROC) curve analysis. Ultimately, we identified an immune-related ceRNA regulatory axis linked to ferroptosis in AMI. Results Among 56 DE-FRGs identified in AMI, 41 of them were integrated into the construction of competitive endogenous RNA (ceRNA) networks. TLR4 and PIK3CA were identified as key DE-FRGs and PIK3CA was confirmed as a diagnostic biomarker for AMI. Moreover, CD4_native cells, nTreg cells, Th2 cells, Th17 cells, central-memory cells, effector-memory cells, and CD8_T cells had higher infiltrates in AMI samples compared to control samples. In contrast, exhausted cells, iTreg cells, and Tfh cells had lower infiltrates in AMI samples. Spearman analysis confirmed the correlation between 24 immune cells and PIK3CA/TLR4. Ultimately, we constructed an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA. Conclusion Our comprehensive analysis has identified PIK3CA as a robust and promising biomarker for this condition. Moreover, we have also identified an immune-related regulatory axis involving XIST and OIP5-AS1/miR-216a/PIK3CA, which may play a key role in regulating ferroptosis during AMI progression.

Details

Language :
English
ISSN :
14712261
Volume :
24
Issue :
1
Database :
Directory of Open Access Journals
Journal :
BMC Cardiovascular Disorders
Publication Type :
Academic Journal
Accession number :
edsdoj.77965c5fb5144a0afb44cfbc9c4a190
Document Type :
article
Full Text :
https://doi.org/10.1186/s12872-023-03622-z