Back to Search
Start Over
Site-Selective Polyolefin Hydrogenolysis on Atomic Ru for Methanation Suppression and Liquid Fuel Production
- Source :
- Research, Vol 6 (2023)
- Publication Year :
- 2023
- Publisher :
- American Association for the Advancement of Science (AAAS), 2023.
-
Abstract
- Catalytic hydrogenolysis of end-of-life polyolefins can produce value-added liquid fuels and therefore holds great promises in plastic waste reuse and environmental remediation. The major challenge limiting the recycling economic benefit is the severe methanation (usually >20%) induced by terminal C–C cleavage and fragmentation in polyolefin chains. Here, we overcome this challenge by demonstrating that Ru single-atom catalyst can effectively suppress methanation by inhibiting terminal C–C cleavage and preventing chain fragmentation that typically occurs on multi-Ru sites. The Ru single-atom catalyst supported on CeO2 shows an ultralow CH4 yield of 2.2% and a liquid fuel yield of over 94.5% with a production rate of 314.93 gfuels gRu−1 h−1 at 250 °C for 6 h. Such remarkable catalytic activity and selectivity of Ru single-atom catalyst in polyolefin hydrogenolysis offer immense opportunities for plastic upcycling.
- Subjects :
- Science
Subjects
Details
- Language :
- English
- ISSN :
- 26395274
- Volume :
- 6
- Database :
- Directory of Open Access Journals
- Journal :
- Research
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.77938573c6304239b1b3a9925467ecaf
- Document Type :
- article
- Full Text :
- https://doi.org/10.34133/research.0032