Back to Search
Start Over
Thermal noise-driven resonant sensors
- Source :
- Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-13 (2024)
- Publication Year :
- 2024
- Publisher :
- Nature Publishing Group, 2024.
-
Abstract
- Abstract MEMS/NEMS resonant sensors hold promise for minute mass and force sensing. However, one major challenge is that conventional externally driven sensors inevitably encounter undesired intrinsic noise, which imposes a fundamental limitation upon their signal-to-noise ratio (SNR) and, consequently, the resolution. Particularly, this restriction becomes increasingly pronounced as sensors shrink to the nanoscale. In this work, we propose a counterintuitive paradigm shift that turns intrinsic thermal noise from an impediment to a constituent of the sensor by harvesting it as the driving force, obviating the need for external actuation and realizing ‘noise-driven’ sensors. Those sensors employ the dynamically amplified response to thermal noise at resonances for stimulus detection. We demonstrate that lightly damped and highly compliant nano-structures with high aspect ratios are promising candidates for this class of sensors. To overcome the phase incoherence of the drive force, three noise-enabled quantitative sensing mechanisms are developed. We validated our sensor paradigm by experimental demonstrating noise-driven pressure and temperature sensors. Noise-driven sensors offer a new opportunity for delivering practical NEMS sensors that can function at room temperature and under ambient pressure, and a development that suggests a path to cheaper, simpler, and low-power-consumption sensors.
- Subjects :
- Technology
Engineering (General). Civil engineering (General)
TA1-2040
Subjects
Details
- Language :
- English
- ISSN :
- 20557434
- Volume :
- 10
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Microsystems & Nanoengineering
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.77141cec56fc42ed8c6830cd1def6ada
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41378-024-00718-0