Back to Search Start Over

Thermal noise-driven resonant sensors

Authors :
Yan Qiao
Alaaeldin Elhady
Mohamed Arabi
Eihab Abdel-Rahman
Wenming Zhang
Source :
Microsystems & Nanoengineering, Vol 10, Iss 1, Pp 1-13 (2024)
Publication Year :
2024
Publisher :
Nature Publishing Group, 2024.

Abstract

Abstract MEMS/NEMS resonant sensors hold promise for minute mass and force sensing. However, one major challenge is that conventional externally driven sensors inevitably encounter undesired intrinsic noise, which imposes a fundamental limitation upon their signal-to-noise ratio (SNR) and, consequently, the resolution. Particularly, this restriction becomes increasingly pronounced as sensors shrink to the nanoscale. In this work, we propose a counterintuitive paradigm shift that turns intrinsic thermal noise from an impediment to a constituent of the sensor by harvesting it as the driving force, obviating the need for external actuation and realizing ‘noise-driven’ sensors. Those sensors employ the dynamically amplified response to thermal noise at resonances for stimulus detection. We demonstrate that lightly damped and highly compliant nano-structures with high aspect ratios are promising candidates for this class of sensors. To overcome the phase incoherence of the drive force, three noise-enabled quantitative sensing mechanisms are developed. We validated our sensor paradigm by experimental demonstrating noise-driven pressure and temperature sensors. Noise-driven sensors offer a new opportunity for delivering practical NEMS sensors that can function at room temperature and under ambient pressure, and a development that suggests a path to cheaper, simpler, and low-power-consumption sensors.

Details

Language :
English
ISSN :
20557434
Volume :
10
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Microsystems & Nanoengineering
Publication Type :
Academic Journal
Accession number :
edsdoj.77141cec56fc42ed8c6830cd1def6ada
Document Type :
article
Full Text :
https://doi.org/10.1038/s41378-024-00718-0