Back to Search Start Over

Pyrogenic carbon accelerates iron cycling and hydroxyl radical production during redox fluctuations of paddy soils

Authors :
Danyu Huang
Ning Chen
Yuan Lin
Chenghao Ge
Xiaolei Wang
Dixiang Wang
Changyin Zhu
Guodong Fang
Dongmei Zhou
Source :
Biochar, Vol 5, Iss 1, Pp 1-17 (2023)
Publication Year :
2023
Publisher :
Springer, 2023.

Abstract

Abstract Carbon materials (e.g., pyrogenic carbon (PyC)) are widely used in agricultural soils and can participate in various biogeochemical processes, including iron (Fe) cycling. In soils, Fe(II) species have been proposed as the main active contributor to produce reactive oxygen species (ROS), which are involved in various biogeochemical processes. However, the effects of PyC on the transformation of different Fe species in soils and the associated production of ROS are rarely investigated. This study examined the influence of PyC (pyrolyzed at 300–700 °C) on Fe(II)/Fe(III) cycling and hydroxyl radical (·OH) production during redox fluctuations of paddy soils. Results showed that the reduction of Fe(III) in soils was facilitated by PyC during anoxic incubation, which was ascribed to the increased abundance of dissimilatory Fe(III)-reducing microorganisms (biotic reduction) and the electron exchange capacity of PyC (abiotic reduction). During oxygenation, PyC and higher soil pH promoted the oxidation of active Fe(II) species (e.g., exchangeable and low-crystalline Fe(II)), which consequently induced higher yield of ·OH and further led to degradation of imidacloprid and inactivation of soil microorganisms. Our results demonstrated that PyC accelerated Fe(II)/Fe(III) cycling and ·OH production during redox fluctuations of paddy soils (especially those with low content of soil organic carbon), providing a new insight for remediation strategies in agricultural fields contaminated with organic pollutants. Graphical Abstract

Details

Language :
English
ISSN :
25247867
Volume :
5
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Biochar
Publication Type :
Academic Journal
Accession number :
edsdoj.76e9715c1e2341c7aaced51235ddc951
Document Type :
article
Full Text :
https://doi.org/10.1007/s42773-023-00236-8