Back to Search Start Over

Tripled fixed point techniques for solving system of tripled-fractional differential equations

Authors :
Hasanen A. Hammad
Manuel De la Sen
Source :
AIMS Mathematics, Vol 6, Iss 3, Pp 2330-2343 (2021)
Publication Year :
2021
Publisher :
AIMS Press, 2021.

Abstract

The intended goal of this manuscript is to discuss the existence of the solution to the below system of tripled-fractional differential equations (TFDEs, for short):where $ \Theta ^{\mu } $ is RL-fractional derivative of order $ \tau, \; \Omega = [0, \Lambda ], \; \Lambda > 0, $ and $ \gimel :\Omega \times \mathbb{R} \rightarrow \mathbb{R}, $ with $ \gimel (0, 0) = 0, \; \Game :\Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} $ are functions taken under appropriate hypotheses. The method of the proof depends on a manner of a tripled fixed point (TFP), which generalize a fixed point theorem of Burton [1]. At last, a non-trivial example to strong our results is illustrated.

Details

Language :
English
ISSN :
24736988
Volume :
6
Issue :
3
Database :
Directory of Open Access Journals
Journal :
AIMS Mathematics
Publication Type :
Academic Journal
Accession number :
edsdoj.76a676d02b2f4f74a2a61a67245ae245
Document Type :
article
Full Text :
https://doi.org/10.3934/math.2021141?viewType=HTML