Back to Search
Start Over
Tripled fixed point techniques for solving system of tripled-fractional differential equations
- Source :
- AIMS Mathematics, Vol 6, Iss 3, Pp 2330-2343 (2021)
- Publication Year :
- 2021
- Publisher :
- AIMS Press, 2021.
-
Abstract
- The intended goal of this manuscript is to discuss the existence of the solution to the below system of tripled-fractional differential equations (TFDEs, for short):where $ \Theta ^{\mu } $ is RL-fractional derivative of order $ \tau, \; \Omega = [0, \Lambda ], \; \Lambda > 0, $ and $ \gimel :\Omega \times \mathbb{R} \rightarrow \mathbb{R}, $ with $ \gimel (0, 0) = 0, \; \Game :\Omega \times \mathbb{R} \times \mathbb{R} \rightarrow \mathbb{R} $ are functions taken under appropriate hypotheses. The method of the proof depends on a manner of a tripled fixed point (TFP), which generalize a fixed point theorem of Burton [1]. At last, a non-trivial example to strong our results is illustrated.
Details
- Language :
- English
- ISSN :
- 24736988
- Volume :
- 6
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- AIMS Mathematics
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.76a676d02b2f4f74a2a61a67245ae245
- Document Type :
- article
- Full Text :
- https://doi.org/10.3934/math.2021141?viewType=HTML