Back to Search Start Over

13C MRI of hyperpolarized pyruvate at 120 µT

Authors :
Nicolas Kempf
Rainer Körber
Markus Plaumann
Andrey N. Pravdivtsev
Jörn Engelmann
Johannes Boldt
Klaus Scheffler
Thomas Theis
Kai Buckenmaier
Source :
Scientific Reports, Vol 14, Iss 1, Pp 1-7 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Nuclear spin hyperpolarization increases the sensitivity of magnetic resonance dramatically, enabling many new applications, including real-time metabolic imaging. Parahydrogen-based signal amplification by reversible exchange (SABRE) was employed to hyperpolarize [1-13C]pyruvate and demonstrate 13C imaging in situ at 120 µT, about twice Earth’s magnetic field, with two different signal amplification by reversible exchange variants: SABRE in shield enables alignment transfer to heteronuclei (SABRE-SHEATH), where hyperpolarization is transferred from parahydrogen to [1-13C]pyruvate at a magnetic field below 1 µT, and low-irradiation generates high tesla (LIGHT-SABRE), where hyperpolarization was prepared at 120 µT, avoiding magnetic field cycling. The 3-dimensional images of a phantom were obtained using a superconducting quantum interference device (SQUID) based magnetic field detector with submillimeter resolution. These 13C images demonstrate the feasibility of low-field 13C metabolic magnetic resonance imaging (MRI) of 50 mM [1-13C]pyruvate hyperpolarized by parahydrogen in reversible exchange imaged at about twice Earth’s magnetic field. Using thermal 13C polarization available at 120 µT, the same experiment would have taken about 300 billion years.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.7655cbf0626440f38c811e53fb01f8b7
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-024-54770-x