Back to Search Start Over

Characterization of an aerosolized nanoparticle beam beyond the diffraction limit through strong field ionization

Authors :
Michael Davino
Tobias Saule
Nora G. Helming
J. A. Powell
Carlos Trallero-Herrero
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-8 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract The study of nanomaterials is an active area of research for technological applications as well as fundamental science. A common method for studying properties of isolated nanoparticles is by an in-vacuum particle beam produced via an aerodynamic lens. Despite being common practice, characterization of such beams has proven difficult as light scattering detection techniques fail for particles with sizes beyond the diffraction limit. Here we present a new technique for characterizing such nanoparticle beams using strong field ionization. By focusing an ultrafast, mJ-level laser into the particle beam, a nanoparticle within the laser focus is ionized and easily detected by its ejected electrons. This method grants direct access to the nanoparticle density at the location of the focus, and by scanning the focus through the transverse and longitudinal profiles of the particle beam we attain the 3-dimensional particle density distribution for a cylindrically symmetric beam. Further, we show that strong field ionization is effective in detecting spherical nanoparticles as small as 10 nm in diameter. Additionally, this technique is an effective tool in optimizing the particle beam for specific applications. As an example we show that the particle beam density and width can be manipulated by restricting the gas flow into the aerodynamic lens.

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.764c64d701469597019c9450fbc12b
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-13466-w