Back to Search Start Over

Role of Bimodal Water Retention Curve on the Unsaturated Shear Strength

Authors :
Alfrendo Satyanaga
Nail Bairakhmetov
Jong R. Kim
Sung-Woo Moon
Source :
Applied Sciences, Vol 12, Iss 3, p 1266 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

Changes in climatic conditions are expected globally resulting in a higher rainfall intensity and longer duration of rainfall. The increase in the rainwater infiltration into the soil contributes to many geotechnical issues, such as excessive settlement, retaining wall failure and rainfall-induced slope failures. These geotechnical problems could be mitigated by the improvement of the problematic soil with the incorporation of the unsaturated soil mechanic principles. Dual-porosity soils or soils with bimodal water retention curve (WRC) are able to retain more water during prolonged drying and they would be able to drain out water faster during intense rainfall to maintain the slope stability. The objective of this study is to investigate the characteristics of the unsaturated shear strength of soil with bimodal WRC. In addition, the new mathematical equation is proposed to estimate the unsaturated shear strength of soils with a bimodal WRC. The results of the study indicated that the nonlinearity of the unsaturated shear strength is a function of the shape of bimodal WRC limited by the first and second air-entry value (AEV) of dual-porosity soils. The proposed equation agreed well with the experimental data of the unsaturated shear strength for dual-porosity soil.

Details

Language :
English
ISSN :
20763417
Volume :
12
Issue :
3
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.7614d1cd49c41c2a39d747b768bec50
Document Type :
article
Full Text :
https://doi.org/10.3390/app12031266