Back to Search Start Over

In Vitro Zika Virus Infection of Human Neural Progenitor Cells: Meta-Analysis of RNA-Seq Assays

Authors :
Rossella Gratton
Paola Maura Tricarico
Almerinda Agrelli
Heverton Valentim Colaço da Silva
Lucas Coêlho Bernardo
Sergio Crovella
Antonio Victor Campos Coelho
Ronald Rodrigues de Moura
Lucas André Cavalcanti Brandão
Source :
Microorganisms, Vol 8, Iss 2, p 270 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

The Zika virus (ZIKV) is an emergent arthropod-borne virus (arbovirus) responsible for congenital Zika syndrome (CZS) and a range of other congenital malformations. Evidence shows that ZIKV infects human neural progenitor cells (hNPCs) in the fetal brain, prompting inflammation and tissue damage/loss. Despite recent advances, little is known about the pathways involved in CZS pathogenesis. We performed a meta-analysis, gene ontology (GO), and pathway analysis of whole transcriptome studies with the aim of clarifying the genes and pathways potentially altered during hNPCs infection with ZIKV. We selected three studies (17 samples of infected hPNCs compared to hPNCs uninfected controls) through a systematic search of the Gene Expression Omnibus (GEO) database. The raw reads were trimmed, counted, and normalized. Next, we performed a rank product meta-analysis to detect consistently differentially expressed genes (DEGs) in these independent experiments. We detected 13 statistically significant DEGs. GO ontology and reactome analysis showed an enrichment of interferon, pro-inflammatory, and chemokines signaling and apoptosis pathways in ZIKV-infected cells. Moreover, we detected three possible new candidate genes involved in hNPCs infection: APOL6, XAF1, and TNFRSF1. Our results confirm that interferon (IFN) signaling dominates the ZIKV response, and that a crucial contribution is given by apoptotic pathways, which might elicit the CZS phenotype.

Details

Language :
English
ISSN :
20762607
Volume :
8
Issue :
2
Database :
Directory of Open Access Journals
Journal :
Microorganisms
Publication Type :
Academic Journal
Accession number :
edsdoj.76001435332141bdaf4fc48f3a60c56f
Document Type :
article
Full Text :
https://doi.org/10.3390/microorganisms8020270