Back to Search Start Over

Identifying Galaxy Mergers in Simulated CEERS NIRCam Images Using Random Forests

Authors :
Caitlin Rose
Jeyhan S. Kartaltepe
Gregory F. Snyder
Vicente Rodriguez-Gomez
L. Y. Aaron Yung
Pablo Arrabal Haro
Micaela B. Bagley
Antonello Calabró
Nikko J. Cleri
M. C. Cooper
Luca Costantin
Darren Croton
Mark Dickinson
Steven L. Finkelstein
Boris Häußler
Benne W. Holwerda
Anton M. Koekemoer
Peter Kurczynski
Ray A. Lucas
Kameswara Bharadwaj Mantha
Casey Papovich
Pablo G. Pérez-González
Nor Pirzkal
Rachel S. Somerville
Amber N. Straughn
Sandro Tacchella
Source :
The Astrophysical Journal, Vol 942, Iss 1, p 54 (2023)
Publication Year :
2023
Publisher :
IOP Publishing, 2023.

Abstract

Identifying merging galaxies is an important—but difficult—step in galaxy evolution studies. We present random forest (RF) classifications of galaxy mergers from simulated JWST images based on various standard morphological parameters. We describe (a) constructing the simulated images from IllustrisTNG and the Santa Cruz SAM and modifying them to mimic future CEERS observations and nearly noiseless observations, (b) measuring morphological parameters from these images, and (c) constructing and training the RFs using the merger history information for the simulated galaxies available from IllustrisTNG. The RFs correctly classify ∼60% of non-merging and merging galaxies across 0.5 < z < 4.0. Rest-frame asymmetry parameters appear more important for lower-redshift merger classifications, while rest-frame bulge and clump parameters appear more important for higher-redshift classifications. Adjusting the classification probability threshold does not improve the performance of the forests. Finally, the shape and slope of the resulting merger fraction and merger rate derived from the RF classifications match with theoretical Illustris predictions but are underestimated by a factor of ∼0.5.

Details

Language :
English
ISSN :
15384357
Volume :
942
Issue :
1
Database :
Directory of Open Access Journals
Journal :
The Astrophysical Journal
Publication Type :
Academic Journal
Accession number :
edsdoj.75fd093877dd45049a47e828998b860b
Document Type :
article
Full Text :
https://doi.org/10.3847/1538-4357/ac9f10