Back to Search Start Over

Characterization of Silver Carbonate Nanoparticles Biosynthesized Using Marine Actinobacteria and Exploring of Their Antimicrobial and Antibiofilm Activity

Authors :
Omar Messaoudi
Ibrahim Benamar
Ahmed Azizi
Salim Albukhaty
Yasmina Khane
Ghassan M. Sulaiman
Mounir M. Salem-Bekhit
Kaouthar Hamdi
Sirine Ghoummid
Abdelhalim Zoukel
Ilhem Messahli
Yacine Kerchich
Farouk Benaceur
Mohamed M. Salem
Mourad Bendahou
Source :
Marine Drugs, Vol 21, Iss 10, p 536 (2023)
Publication Year :
2023
Publisher :
MDPI AG, 2023.

Abstract

Bacterial resistance to different antimicrobial agents is growing with alarming speed, especially when bacterial cells are living in biofilm. Hybrid nanoparticles, synthesized through the green method, hold promise as a potential solution to this challenge. In this study, 66 actinomycete strains were isolated from three distinct marine sources: marine sediment, the algae Codium bursa, and the marine sponge Chondrosia reniformis. From the entirety of the isolated strains, one strain, S26, identified as Saccharopolyspora erythrea, was selected based on its taxonomic position and significant antimicrobial activity. Using the biomass of the selected marine Actinobacteria, the green synthesis of eco-friendly silver carbonate nanoparticles (BioAg2CO3NPs) is reported for the first time in this pioneering study. The BioAg2CO3NPs were characterized using different spectroscopic and microscopic analyses; the synthesized BioAg2CO3NPs primarily exhibit a triangular shape, with an approximate size of 100 nm. Biological activity evaluation indicated that the BioAg2CO3NPs exhibited good antimicrobial activity against all tested microorganisms and were able to remove 58% of the biofilm formed by the Klebsiella pneumoniae kp6 strain.

Details

Language :
English
ISSN :
16603397
Volume :
21
Issue :
10
Database :
Directory of Open Access Journals
Journal :
Marine Drugs
Publication Type :
Academic Journal
Accession number :
edsdoj.75d102f58f3a432fb1b18013e6d1a4b4
Document Type :
article
Full Text :
https://doi.org/10.3390/md21100536