Back to Search Start Over

Identification of macrophage driver genes in fibrosis caused by different heart diseases based on omics integration

Authors :
Yong-Zheng Zhang
Yang Wu
Meng-jia Li
Aerzu Mijiti
Lu-Feng Cheng
Source :
Journal of Translational Medicine, Vol 22, Iss 1, Pp 1-15 (2024)
Publication Year :
2024
Publisher :
BMC, 2024.

Abstract

Abstract Background Myocardial fibrosis, a hallmark of heart disease, is closely associated with macrophages, yet the genetic pathophysiology remains incompletely understood. In this study, we utilized integrated single-cell transcriptomics and bulk RNA-seq analysis to investigate the relationship between macrophages and myocardial fibrosis across omics integration. Methods We examined and curated existing single-cell data from dilated cardiomyopathy (DCM), ischemic cardiomyopathy (ICM), myocardial infarction (MI), and heart failure (HF), and analyzed the integrated data using cell communication, transcription factor identification, high dimensional weighted gene co-expression network analysis (hdWGCNA), and functional enrichment to elucidate the drivers of macrophage polarization and the macrophage-to-myofibroblast transition (MMT). Additionally, we assessed the accuracy of single-cell data from the perspective of driving factors, cell typing, anti-fibrosis performance of left ventricular assist device (LVAD). Candidate drugs were screened using L1000FWD. Results All four heart diseases exhibit myocardial fibrosis, with only MI showing an increase in macrophage proportions. Macrophages participate in myocardial fibrosis through various fibrogenic molecules, especially evident in DCM and MI. Abnormal RNA metabolism and dysregulated transcription are significant drivers of macrophage-mediated fibrosis. Furthermore, profibrotic macrophages exhibit M1 polarization and increased MMT. In HF patients, those responding to LVAD therapy showed a significant decrease in driver gene expression, M1 polarization, and MMT. Drug repurposing identified cinobufagin as a potential therapeutic agent. Conclusion Using integrated single-cell transcriptomics, we identified the drivers of macrophage-mediated myocardial fibrosis in four heart diseases and confirmed the therapeutic effect of LVAD on improving HF with single-cell accuracy, providing novel insights into the diagnosis and treatment of myocardial fibrosis.

Details

Language :
English
ISSN :
14795876
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Translational Medicine
Publication Type :
Academic Journal
Accession number :
edsdoj.75ce6a11ca7140309265a6a502ca7dc4
Document Type :
article
Full Text :
https://doi.org/10.1186/s12967-024-05624-7