Back to Search Start Over

Overexpression of an ALS-associated FUS mutation in C. elegans disrupts NMJ morphology and leads to defective neuromuscular transmission

Authors :
Sebastian M. Markert
Michael Skoruppa
Bin Yu
Ben Mulcahy
Mei Zhen
Shangbang Gao
Michael Sendtner
Christian Stigloher
Source :
Biology Open, Vol 9, Iss 12 (2020)
Publication Year :
2020
Publisher :
The Company of Biologists, 2020.

Abstract

The amyotrophic lateral sclerosis (ALS) neurodegenerative disorder has been associated with multiple genetic lesions, including mutations in the gene for fused in sarcoma (FUS), a nuclear-localized RNA/DNA-binding protein. Neuronal expression of the pathological form of FUS proteins in Caenorhabditis elegans results in mislocalization and aggregation of FUS in the cytoplasm, and leads to impairment of motility. However, the mechanisms by which the mutant FUS disrupts neuronal health and function remain unclear. Here we investigated the impact of ALS-associated FUS on motor neuron health using correlative light and electron microscopy, electron tomography, and electrophysiology. We show that ectopic expression of wild-type or ALS-associated human FUS impairs synaptic vesicle docking at neuromuscular junctions. ALS-associated FUS led to the emergence of a population of large, electron-dense, and filament-filled endosomes. Electrophysiological recording revealed reduced transmission from motor neurons to muscles. Together, these results suggest a pathological effect of ALS-causing FUS at synaptic structure and function organization. This article has an associated First Person interview with the first author of the paper.

Details

Language :
English
ISSN :
20466390
Volume :
9
Issue :
12
Database :
Directory of Open Access Journals
Journal :
Biology Open
Publication Type :
Academic Journal
Accession number :
edsdoj.75be1ee1542b407cbeb9b4439e9970b0
Document Type :
article
Full Text :
https://doi.org/10.1242/bio.055129