Back to Search Start Over

Deep learning predicts patients outcome and mutations from digitized histology slides in gastrointestinal stromal tumor

Authors :
Yu Fu
Marie Karanian
Raul Perret
Axel Camara
François Le Loarer
Myriam Jean-Denis
Isabelle Hostein
Audrey Michot
Françoise Ducimetiere
Antoine Giraud
Jean-Baptiste Courreges
Kevin Courtet
Yech’an Laizet
Etienne Bendjebbar
Jean Ogier Du Terrail
Benoit Schmauch
Charles Maussion
Jean-Yves Blay
Antoine Italiano
Jean-Michel Coindre
Source :
npj Precision Oncology, Vol 7, Iss 1, Pp 1-9 (2023)
Publication Year :
2023
Publisher :
Nature Portfolio, 2023.

Abstract

Abstract Risk assessment of gastrointestinal stromal tumor (GIST) according to the AFIP/Miettinen classification and mutational profiling are major tools for patient management. However, the AFIP/Miettinen classification depends heavily on mitotic counts, which is laborious and sometimes inconsistent between pathologists. It has also been shown to be imperfect in stratifying patients. Molecular testing is costly and time-consuming, therefore, not systematically performed in all countries. New methods to improve risk and molecular predictions are hence crucial to improve the tailoring of adjuvant therapy. We have built deep learning (DL) models on digitized HES-stained whole slide images (WSI) to predict patients’ outcome and mutations. Models were trained with a cohort of 1233 GIST and validated on an independent cohort of 286 GIST. DL models yielded comparable results to the Miettinen classification for relapse-free-survival prediction in localized GIST without adjuvant Imatinib (C-index=0.83 in cross-validation and 0.72 for independent testing). DL splitted Miettinen intermediate risk GIST into high/low-risk groups (p value = 0.002 in the training set and p value = 0.29 in the testing set). DL models achieved an area under the receiver operating characteristic curve (AUC) of 0.81, 0.91, and 0.71 for predicting mutations in KIT, PDGFRA and wild type, respectively, in cross-validation and 0.76, 0.90, and 0.55 in independent testing. Notably, PDGFRA exon18 D842V mutation, which is resistant to Imatinib, was predicted with an AUC of 0.87 and 0.90 in cross-validation and independent testing, respectively. Additionally, novel histological criteria predictive of patients’ outcome and mutations were identified by reviewing the tiles selected by the models. As a proof of concept, our study showed the possibility of implementing DL with digitized WSI and may represent a reproducible way to improve tailoring therapy and precision medicine for patients with GIST.

Details

Language :
English
ISSN :
2397768X
Volume :
7
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Precision Oncology
Publication Type :
Academic Journal
Accession number :
edsdoj.75a03086c3eb458f956500ff25fbf5f3
Document Type :
article
Full Text :
https://doi.org/10.1038/s41698-023-00421-9