Back to Search
Start Over
Two enantiomeric perovskite ferroelectrics with a high Tc raised by inserting intermolecular hydrogen bonds
- Source :
- APL Materials, Vol 9, Iss 3, Pp 031102-031102-7 (2021)
- Publication Year :
- 2021
- Publisher :
- AIP Publishing LLC, 2021.
-
Abstract
- Molecular ferroelectrics have promising potential as next-generation flexible electronic materials by the advantage of flexibility, structural tunability, and easy processability. However, an obstacle in expanding their promising applications is effectively raising the ferroelectric transition temperature (Tc) necessary for practical applications, especially under high-temperature operating conditions. Herein, taking the advantage of a hydroxyl group that could form stronger hydrogen bonds to insert/tune host–guest and guest–guest interactions, we employed the 3-hydroxypyrrolidine cation to construct two new enantiomeric hexagonal perovskite ferroelectrics, (R)-3-OH-(C4H9N)[CdCl3] and (S)-3-OH-(C4H9N)[CdCl3]. Both of them undergo a ferroelectric phase transition from C2221 to P21 with a high Tc of 350 K, which is 110 K and 47 K higher than that of their parent compound (C4H10N)[CdCl3] (240 K) and F-substituted analogues (R/S)-3-F-(C4H9N)[CdCl3] (303 K), respectively. These findings well demonstrate that, besides the F-substitution strategy, an OH-substitution strategy provides an important and practical way in designing high-Tc ferroelectrics.
- Subjects :
- Biotechnology
TP248.13-248.65
Physics
QC1-999
Subjects
Details
- Language :
- English
- ISSN :
- 2166532X
- Volume :
- 9
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- APL Materials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.75765096dc3c4161b87eb5e29e1242f0
- Document Type :
- article
- Full Text :
- https://doi.org/10.1063/5.0035793