Back to Search
Start Over
Hydrodeoxygenation of Phenol as a Model Compound by Ni2P/HBeta-SBA-15
- Source :
- BioResources, Vol 18, Iss 3, Pp 5165-5181 (2023)
- Publication Year :
- 2023
- Publisher :
- North Carolina State University, 2023.
-
Abstract
- The stable silica sieve-based HBeta-SBA-15 catalyst-carrier was successfully prepared by a hydrothermal synthesis method, and then Ni2P/HBeta-SBA-15 new hydrodeoxygenation catalyst was successfully loaded by the equal volume impregnation method. It was characterized by X-ray diffraction (XRD), N2 adsorption-desorption, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and pyrolysis-infrared (Py-IR) methods. The results showed that SBA-15 was successfully immobilized on HBeta to form a microporous and mesoporous composite carrier. The introduction of SBA-15 not only increased the specific surface area of HBeta-SBA-15, but also reduced its acidity. After loading the active metal component Ni2P, the structure of the catalyst has not changed much. Hydrodeoxygenation (HDO) of phenol model compounds over Ni2P/HBeta-SBA-15 catalyst was studied in water. The response surface analysis showed that the conversion of phenol was 84.4% and the selectivity of cyclohexane was 94.2% at a lower temperature of 240 °C. The effect of reaction conditions on the yield of cyclohexane was as follows: the reaction temperature > the amount of hydrogen > the amount of catalyst > the reaction time. This study provides theoretical guidance for upgrading biomass pyrolysis oil to green fuel through hydrodeoxygenation.
Details
- Language :
- English
- ISSN :
- 19302126
- Volume :
- 18
- Issue :
- 3
- Database :
- Directory of Open Access Journals
- Journal :
- BioResources
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.75594753e54477781808a9b864af31c
- Document Type :
- article