Back to Search Start Over

The infimum values of two probability functions for the Gamma distribution

Authors :
Ping Sun
Ze-Chun Hu
Wei Sun
Source :
Journal of Inequalities and Applications, Vol 2024, Iss 1, Pp 1-23 (2024)
Publication Year :
2024
Publisher :
SpringerOpen, 2024.

Abstract

Abstract Let α, β be positive real numbers and let X α , β $X_{\alpha ,\beta}$ be a Gamma random variable with shape parameter α and scale parameter β. We study infimum values of the function ( α , β ) ↦ P { X α , β ≤ κ E [ X α , β ] } $(\alpha ,\beta )\mapsto P\{X_{\alpha ,\beta}\le \kappa E[X_{\alpha ,\beta}] \}$ for any fixed κ > 0 $\kappa >0$ and the function ( α , β ) ↦ P { | X α , β − E [ X α , β ] | ≤ Var ( X α , β ) } $(\alpha ,\beta )\mapsto P\{|X_{\alpha ,\beta}-E[X_{\alpha ,\beta}]| \le \sqrt{\operatorname{Var}(X_{\alpha ,\beta})}\}$ . We show that inf α , β P { X α , β ≤ E [ X α , β ] } = 1 2 $\inf_{\alpha ,\beta}P\{X_{\alpha ,\beta}\le E[X_{\alpha ,\beta}]\}= \frac{1}{2}$ and inf α , β P { | X α , β − E [ X α , β ] | ≤ Var ( X α , β ) } = P { | Z | ≤ 1 } ≈ 0.6827 $\inf_{\alpha ,\beta}P\{|X_{\alpha ,\beta}-E[X_{\alpha ,\beta}]|\le \sqrt{\operatorname{Var}(X_{\alpha ,\beta})}\}=P\{|Z|\le 1\}\approx 0.6827$ , where Z is a standard normal random variable.

Details

Language :
English
ISSN :
1029242X
Volume :
2024
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Journal of Inequalities and Applications
Publication Type :
Academic Journal
Accession number :
edsdoj.74ff0729a1794d75aa7288e3281dd78c
Document Type :
article
Full Text :
https://doi.org/10.1186/s13660-024-03081-w