Back to Search
Start Over
DWNet: Dual-Window Deep Neural Network for Time Series Prediction
- Source :
- Complexity, Vol 2021 (2021)
- Publication Year :
- 2021
- Publisher :
- Hindawi-Wiley, 2021.
-
Abstract
- Multivariate time series prediction is a very important task, which plays a huge role in climate, economy, and other fields. We usually use an Attention-based Encoder-Decoder network to deal with multivariate time series prediction because the attention mechanism makes it easier for the model to focus on the really important attributes. However, the Encoder-Decoder network has the problem that the longer the length of the sequence is, the worse the prediction accuracy is, which means that the Encoder-Decoder network cannot process long series and therefore cannot obtain detailed historical information. In this paper, we propose a dual-window deep neural network (DWNet) to predict time series. The dual-window mechanism allows the model to mine multigranularity dependencies of time series, such as local information obtained from a short sequence and global information obtained from a long sequence. Our model outperforms nine baseline methods in four different datasets.
- Subjects :
- Electronic computers. Computer science
QA75.5-76.95
Subjects
Details
- Language :
- English
- ISSN :
- 10762787 and 10990526
- Volume :
- 2021
- Database :
- Directory of Open Access Journals
- Journal :
- Complexity
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.74c8143795e04335ac291a16dcba2407
- Document Type :
- article
- Full Text :
- https://doi.org/10.1155/2021/1125630