Back to Search
Start Over
A Swin Transformer-based model for mosquito species identification
- Source :
- Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
- Publication Year :
- 2022
- Publisher :
- Nature Portfolio, 2022.
-
Abstract
- Abstract Mosquito transmit numbers of parasites and pathogens resulting in fatal diseases. Species identification is a prerequisite for effective mosquito control. Existing morphological and molecular classification methods have evitable disadvantages. Here we introduced Deep learning techniques for mosquito species identification. A balanced, high-definition mosquito dataset with 9900 original images covering 17 species was constructed. After three rounds of screening and adjustment-testing (first round among 3 convolutional neural networks and 3 Transformer models, second round among 3 Swin Transformer variants, and third round between 2 images sizes), we proposed the first Swin Transformer-based mosquito species identification model (Swin MSI) with 99.04% accuracy and 99.16% F1-score. By visualizing the identification process, the morphological keys used in Swin MSI were similar but not the same as those used by humans. Swin MSI realized 100% subspecies-level identification in Culex pipiens Complex and 96.26% accuracy for novel species categorization. It presents a promising approach for mosquito identification and mosquito borne diseases control.
Details
- Language :
- English
- ISSN :
- 20452322
- Volume :
- 12
- Issue :
- 1
- Database :
- Directory of Open Access Journals
- Journal :
- Scientific Reports
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.749135d36474439da16b6bed2f49de01
- Document Type :
- article
- Full Text :
- https://doi.org/10.1038/s41598-022-21017-6