Back to Search Start Over

Metformin alleviates junctional epithelium senescence via the AMPK/SIRT1/autophagy pathway in periodontitis induced by hyperglycemia

Authors :
Xiaoyuan Ye
Yumin Wang
Yanying Tian
Ruonan Bi
Mingyue Li
Chunyan Yang
Li Zhang
Yuguang Gao
Source :
Heliyon, Vol 10, Iss 6, Pp e27478- (2024)
Publication Year :
2024
Publisher :
Elsevier, 2024.

Abstract

The junctional epithelium (JE) serves a crucial protective role in the periodontium. High glucose-related aging results in accelerated barrier dysfunction of the gingival epithelium, which may be associated with diabetic periodontitis. Metformin, an oral hypoglycemic therapeutic, has been proposed as a anti-aging agent. This study aimed to clarify the effect of metformin on diabetic periodontitis and explore its mechanism in ameliorating senescence of JE during hyperglycemia. The db/db mice was used as a diabetic model mice and alterations in the periodontium were observed by hematoxylin-eosin staining and immunohistochemistry. An ameloblast-like cell line (ALC) was cultured with high glucose to induce senescence. Cellular senescence and oxidative stress were evaluated by SA-β-gal staining and Intracellular reactive oxygen species (ROS) levels. Senescence biomarkers, P21 and P53, and autophagy markers, LC3-II/LC3-I, were measured by western blotting and quantitative real-time PCR. To construct a stable SIRT1 (Sirtuin 1) overexpression cell line, we transfected ALCs with lentiviral vectors overexpressing the mouse SIRT1 gene. Cellular senescence was increased in the JE of db/db mice and the periodontium was destroyed, which could be alleviated by metformin. Moreover, oxidative stress and cellular senescence in a high glucose environment were reduced by metformin in in-vitro assays. The autophagy inhibitor 3-MA and SIRT1 inhibitor EX-527 could dampen the effects of metformin. Overexpression of SIRT1 resulted in increased autophagy and decreased oxidative stress and cellular senescence. Meanwhile, AMPK (AMP-activated protein kinase) inhibition reversed the anti-senescence effects of metformin. Overall, these results suggest that metformin alleviates periodontal damage in db/db mice and cellular senescence in ALCs under high glucose conditions via the AMPK/SIRT1/autophagy pathway.

Details

Language :
English
ISSN :
24058440
Volume :
10
Issue :
6
Database :
Directory of Open Access Journals
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
edsdoj.7485e79bf6c94d829f67ed3999b9e78b
Document Type :
article
Full Text :
https://doi.org/10.1016/j.heliyon.2024.e27478