Back to Search Start Over

Four‐phase interleaved TCM DC‐DC buck converter with matrix inductor in battery charging application

Authors :
Anh Dung Nguyen
Shu‐Xin Chen
Yang Chen
Cheng‐Wei Chen
Byeongcheol Han
Jih‐Sheng Lai
Source :
IET Power Electronics, Vol 14, Iss 1, Pp 132-139 (2021)
Publication Year :
2021
Publisher :
Wiley, 2021.

Abstract

Abstract In this paper, a 1‐kW DC‐DC buck converter with a four‐phase interleaved matrix inductor is proposed for battery charging applications. It is well‐known that the DC bias on the inductor will cause high core loss as it changes the B–H characteristic. Typically, the transient conduction mode employed in high voltage applications for zero‐voltage‐switching of devices would cause higher inductor current ripple. The conventional approach to reduce the effect of DC bias and inductor current ripple is employing multi‐phases. However, the cost and size of the converter will increase significantly. This paper proposes the matrix inductor which has a small volume and reduces the effect of the DC bias by flux sharing and flux cancellation at the same time, results in low inductor core loss. With the interleaved operations the output current ripple can be lower which is suitable for battery charging application. Besides, the comparison of the synchronous and interleaved operation is presented. A 1‐kW prototype is built and the experimental results show that the peak efficiency is 99.1% and 99.2% for synchronous and interleaved control, respectively. Additionally, the output current ripple of the interleaved operation is reduced by 85% in comparison with the synchronous operation.

Details

Language :
English
ISSN :
17554543 and 17554535
Volume :
14
Issue :
1
Database :
Directory of Open Access Journals
Journal :
IET Power Electronics
Publication Type :
Academic Journal
Accession number :
edsdoj.744c5a7914e74664bbbd5d25324dfc6f
Document Type :
article
Full Text :
https://doi.org/10.1049/pel2.12017