Back to Search Start Over

K-Means Cluster for Seismicity Partitioning and Geological Structure Interpretation, with Application to the Yongshaba Mine (China)

Authors :
Xueyi Shang
Xibing Li
A. Morales-Esteban
Longjun Dong
Kang Peng
Source :
Shock and Vibration, Vol 2017 (2017)
Publication Year :
2017
Publisher :
Hindawi Limited, 2017.

Abstract

Seismicity partitioning is an important step in geological structure interpretation and seismic hazard assessment. In this paper, seismic event location (X,Y,Z) and Euclidean distance were selected as the K-Means cluster, the Gaussian mixture model (GMM), and the self-organizing maps (SOM) input features and cluster determination measurement, respectively, and 1516 seismic events (M>-1.5) obtained from the Yongshaba mine (China) were chosen for the cluster analysis. In addition, a Silhouette and Krzanowski-Lai- (KL-) combined S-KL index was proposed to obtain the possible optimum cluster number and to compare the cluster methods. Results show that the K-Means cluster obtains the best cluster “quality” with higher S-KL indexes on the whole and meaningful clusters. Furthermore, the optimal number for detailed geological structure interpretation is confirmed as eleven clusters, and we found that two areas probably have faults or caves, and two faults may be falsely inferred by mine geologists. Seismic hazard assessment shows that C5 and C7 (K=11) have a high mean moment magnitude (mM) and C1, C2, C3, and C4 (K=11) have a relatively high mM, where special attention is needed when mining. In addition, C7 (K=11) is the most shear-related area with a mean S-wave to P-wave energy ratio (mEs/Ep) of 41.21. In conclusion, the K-Means cluster provides an effective way for mine seismicity partitioning, geological structure interpretation, and seismic hazard assessment.

Subjects

Subjects :
Physics
QC1-999

Details

Language :
English
ISSN :
10709622 and 18759203
Volume :
2017
Database :
Directory of Open Access Journals
Journal :
Shock and Vibration
Publication Type :
Academic Journal
Accession number :
edsdoj.73ec8698f9dd446086ad841339b85477
Document Type :
article
Full Text :
https://doi.org/10.1155/2017/5913041