Back to Search Start Over

Non-Equilibrium Thermodynamics and Stochastic Dynamics of a Bistable Catalytic Surface Reaction

Authors :
Miguel Pineda
Michail Stamatakis
Source :
Entropy, Vol 20, Iss 11, p 811 (2018)
Publication Year :
2018
Publisher :
MDPI AG, 2018.

Abstract

Catalytic surface reaction networks exhibit nonlinear dissipative phenomena, such as bistability. Macroscopic rate law descriptions predict that the reaction system resides on one of the two steady-state branches of the bistable region for an indefinite period of time. However, the smaller the catalytic surface, the greater the influence of coverage fluctuations, given that their amplitude normally scales as the square root of the system size. Thus, one can observe fluctuation-induced transitions between the steady-states. In this work, a model for the bistable catalytic CO oxidation on small surfaces is studied. After a brief introduction of the average stochastic modelling framework and its corresponding deterministic limit, we discuss the non-equilibrium conditions necessary for bistability. The entropy production rate, an important thermodynamic quantity measuring dissipation in a system, is compared across the two approaches. We conclude that, in our catalytic model, the most favorable non-equilibrium steady state is not necessary the state with the maximum or minimum entropy production rate.

Details

Language :
English
ISSN :
10994300
Volume :
20
Issue :
11
Database :
Directory of Open Access Journals
Journal :
Entropy
Publication Type :
Academic Journal
Accession number :
edsdoj.73e2cfab31af457e99c4301c51441355
Document Type :
article
Full Text :
https://doi.org/10.3390/e20110811