Back to Search Start Over

Innovative Passive and Environmentally Friendly System for Improving the Energy Performance of Buildings

Authors :
Andrei Burlacu
Gavril Sosoi
Chérifa Abid
Marinela Barbuta
Marina Verdes
Robert Stefan Vizitiu
Marius Branoaea
Source :
Materials, Vol 15, Iss 20, p 7224 (2022)
Publication Year :
2022
Publisher :
MDPI AG, 2022.

Abstract

The aim of the study is to develop a system for converting, accumulating, and delivering solar energy that is based on the development of an innovative solar panel with heat pipes and a heat storage wall, for the construction of passive structures. The novel aspect of this experiment is the utilization of concrete walls that have different recyclable materials added to their structure in various proportions. The solar energy from the sunny façades is transformed by this system into thermal energy, which is then transferred by integrated heat pipes in a massive element with high thermal inertia. Using insulated shutters, thermal energy can be stored during the day and released at night to keep the room at a comfortable temperature. In order to integrate the modules into the solar recovery system, four concrete samples were cast with a blend of standard and waste aggregates. Four heat fluxes of 100 W/m2, 150 W/m2, 200 W/m2, and 250 W/m2 were applied to each global system. Thermal imaging data and numerical simulations both supported the findings of temperature sensors. The most effective mixture, fly ash and chopped PET, delivered temperatures that were, on average, 3.3% higher at the end of the charging cycle than those measured for the control sample. The discharging cycle of the concrete block with fly ash and sawdust was the most effective, with an average temperature loss of 5.0 °C as compared to 5.5 °C for the control sample, on average.

Details

Language :
English
ISSN :
19961944
Volume :
15
Issue :
20
Database :
Directory of Open Access Journals
Journal :
Materials
Publication Type :
Academic Journal
Accession number :
edsdoj.73d7d33d3454d88ba5fa6682263b2f5
Document Type :
article
Full Text :
https://doi.org/10.3390/ma15207224