Back to Search Start Over

Utilization of lysed and dried bacterial biomass from the marine purple photosynthetic bacterium Rhodovulum sulfidophilum as a sustainable nitrogen fertilizer for plant production

Authors :
Shamitha Rao Morey-Yagi
Yu Kinoshita
Ko Motoki
Yu Iwahashi
Dao Duy Hanh
Shota Kato
Ryohei Nakano
Kumiko Ochiai
Masaru Kobayashi
Tetsuya Nakazaki
Keiji Numata
Source :
npj Sustainable Agriculture, Vol 2, Iss 1, Pp 1-11 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Plant-based agricultural systems rely heavily on inorganic nitrogen (N) fertilizers to increase yields and ensure food security for the rapidly growing global population. However, the production and overuse of synthetic fertilizers lead to significant amounts of greenhouse gas emissions, causing a critical need for the development of alternative and sustainable organic N fertilizers. Here, we demonstrate the effective use of lysed and dried bacterial biomass from the marine purple photosynthetic bacterium Rhodovulum sulfidophilum as an alternative source of N fertilizer for the cultivation of Japanese mustard spinach (komatsuna, Brassica rapa var. perviridis). To assess the suitability of this processed bacterial biomass, containing approximately 11% N, as a N fertilizer, we examined the effects of its application on plant germination and growth (measured by leaf chlorophyll, maximum leaf length, and dry weight) under two different temperature regimes, comparing it to that of a conventional N-containing mineral fertilizer. Application at rates up to four times that of the mineral fertilizer had no negative effects on seed germination and plant growth. The bacterial biomass had to be applied at approximately twice the rate of mineral fertilizer to obtain similar plant growth parameters, roughly corresponding to the predicted 62% rate of mineralization of the bacterial N. Our findings confirm the ability of plants to take up N from the lysed and dried biomass of marine purple photosynthetic bacteria, demonstrating the potential for using R. sulfidophilum as a source of N fertilizer.

Details

Language :
English
ISSN :
27319202
Volume :
2
Issue :
1
Database :
Directory of Open Access Journals
Journal :
npj Sustainable Agriculture
Publication Type :
Academic Journal
Accession number :
edsdoj.73d1b7c0e3124ef8a434a9c5d93c8abc
Document Type :
article
Full Text :
https://doi.org/10.1038/s44264-024-00018-0