Back to Search Start Over

Activation of Dopamine D1-D2 Receptor Complex Attenuates Cocaine Reward and Reinstatement of Cocaine-Seeking through Inhibition of DARPP-32, ERK, and ΔFosB

Authors :
Ahmed Hasbi
Melissa L. Perreault
Maurice Y. F. Shen
Theresa Fan
Tuan Nguyen
Mohammed Alijaniaram
Tomek J. Banasikowski
Anthony A. Grace
Brian F. O'Dowd
Paul J. Fletcher
Susan R. George
Source :
Frontiers in Pharmacology, Vol 8 (2018)
Publication Year :
2018
Publisher :
Frontiers Media S.A., 2018.

Abstract

A significant subpopulation of neurons in rat nucleus accumbens (NAc) coexpress dopamine D1 and D2 receptors, which can form a D1-D2 receptor complex, but their relevance in addiction is not known. The existence of the D1-D2 heteromer in the striatum of rat and monkey was established using in situ PLA, in situ FRET and co-immunoprecipitation. In rat, D1-D2 receptor heteromer activation led to place aversion and abolished cocaine CPP and locomotor sensitization, cocaine intravenous self-administration and reinstatement of cocaine seeking, as well as inhibited sucrose preference and abolished the motivation to seek palatable food. Selective disruption of this heteromer by a specific interfering peptide induced reward-like effects and enhanced the above cocaine-induced effects, including at a subthreshold dose of cocaine. The D1-D2 heteromer activated Cdk5/Thr75-DARPP-32 and attenuated cocaine-induced pERK and ΔFosB accumulation, together with inhibition of cocaine-enhanced local field potentials in NAc, blocking thus the signaling pathway activated by cocaine: D1R/cAMP/PKA/Thr34-DARPP-32/pERK with ΔFosB accumulation. In conclusion, our results show that the D1-D2 heteromer exerted tonic inhibitory control of basal natural and cocaine reward, and therefore initiates a fundamental physiologic function that limits the liability to develop cocaine addiction.

Details

Language :
English
ISSN :
16639812
Volume :
8
Database :
Directory of Open Access Journals
Journal :
Frontiers in Pharmacology
Publication Type :
Academic Journal
Accession number :
edsdoj.73d0900fe7448689d960230ca5d1563
Document Type :
article
Full Text :
https://doi.org/10.3389/fphar.2017.00924