Back to Search Start Over

Therapeutic Potential of Carbon Monoxide (CO) and Hydrogen Sulfide (H2S) in Hemolytic and Hemorrhagic Vascular Disorders—Interaction between the Heme Oxygenase and H2S-Producing Systems

Authors :
Tamás Gáll
Dávid Pethő
Annamária Nagy
György Balla
József Balla
Source :
International Journal of Molecular Sciences, Vol 22, Iss 1, p 47 (2020)
Publication Year :
2020
Publisher :
MDPI AG, 2020.

Abstract

Over the past decades, substantial work has established that hemoglobin oxidation and heme release play a pivotal role in hemolytic/hemorrhagic disorders. Recent reports have shown that oxidized hemoglobins, globin-derived peptides, and heme trigger diverse biological responses, such as toll-like receptor 4 activation with inflammatory response, reprogramming of cellular metabolism, differentiation, stress, and even death. Here, we discuss these cellular responses with particular focus on their mechanisms that are linked to the pathological consequences of hemorrhage and hemolysis. In recent years, endogenous gasotransmitters, such as carbon monoxide (CO) and hydrogen sulfide (H2S), have gained a lot of interest in connection with various human pathologies. Thus, many CO and H2S-releasing molecules have been developed and applied in various human disorders, including hemolytic and hemorrhagic diseases. Here, we discuss our current understanding of oxidized hemoglobin and heme-induced cell and tissue damage with particular focus on inflammation, cellular metabolism and differentiation, and endoplasmic reticulum stress in hemolytic/hemorrhagic human diseases, and the potential beneficial role of CO and H2S in these pathologies. More detailed mechanistic insights into the complex pathology of hemolytic/hemorrhagic diseases through heme oxygenase-1/CO as well as H2S pathways would reveal new therapeutic approaches that can be exploited for clinical benefit.

Details

Language :
English
ISSN :
14220067 and 16616596
Volume :
22
Issue :
1
Database :
Directory of Open Access Journals
Journal :
International Journal of Molecular Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.73c1f7c7d824dff9270c5b074015d77
Document Type :
article
Full Text :
https://doi.org/10.3390/ijms22010047