Back to Search Start Over

Field Optimization and Electrostatic Stress Reduction of Proposed Conductor Scheme for Pliable Gas-Insulated Transmission Lines

Authors :
Muhammad Junaid Alvi
Tahir Izhar
Asif Ali Qaiser
Hafiz Shafqat Kharal
Adnan Safdar
Source :
Applied Sciences, Vol 9, Iss 15, p 2988 (2019)
Publication Year :
2019
Publisher :
MDPI AG, 2019.

Abstract

The implementation of stranded conductors in flexible gas-insulated transmission lines (FGILs) requires field intensity minimization as well as field irregularity suppression in order to avoid dielectric breakdown. Moreover, the interdependence of enclosure and conductor sizes of FGILs regarding electrostatic aspects necessitate critical consideration of their dimensional specifications. In this research, geometric and electrostatic field optimization for FGILs regarding stranded conductors is performed. In addition, the effect of conductor irregularity on field dispersion is analyzed, and a semiconducting film (SCF)-coated stranded conductor is proposed as a potential candidate for FGILs. Considering the performed optimized design, an 11 kV scaled-down model of a 132-kV FGIL was also fabricated in order to practically analyze its electrostatic and dielectric performances regarding simple and SCF-coated stranded conductors. Simulation and experimental investigations revealed that the SCF-coated stranded conductor significantly minimized the field irregularity of the FGIL along with improving in its dielectric breakdown characteristics.

Details

Language :
English
ISSN :
20763417
Volume :
9
Issue :
15
Database :
Directory of Open Access Journals
Journal :
Applied Sciences
Publication Type :
Academic Journal
Accession number :
edsdoj.73c1d44e2a4bb984ceb161c77c34b5
Document Type :
article
Full Text :
https://doi.org/10.3390/app9152988