Back to Search Start Over

An improved YOLOv5s model for assessing apple graspability in automated harvesting scene

Authors :
Huibin Li
Peng Yang
Huaiyang Liu
Xiang Liu
Jianping Qian
Qiangyi Yu
Changxing Geng
Yun Shi
Source :
Frontiers in Plant Science, Vol 14 (2023)
Publication Year :
2023
Publisher :
Frontiers Media S.A., 2023.

Abstract

IntroductionWith continuously increasing labor costs, an urgent need for automated apple- Qpicking equipment has emerged in the agricultural sector. Prior to apple harvesting, it is imperative that the equipment not only accurately locates the apples, but also discerns the graspability of the fruit. While numerous studies on apple detection have been conducted, the challenges related to determining apple graspability remain unresolved.MethodsThis study introduces a method for detecting multi-occluded apples based on an enhanced YOLOv5s model, with the aim of identifying the type of apple occlusion in complex orchard environments and determining apple graspability. Using bootstrap your own atent(BYOL) and knowledge transfer(KT) strategies, we effectively enhance the classification accuracy for multi-occluded apples while reducing data production costs. A selective kernel (SK) module is also incorporated, enabling the network model to more precisely identify various apple occlusion types. To evaluate the performance of our network model, we define three key metrics: APGA, APTUGA, and APUGA, representing the average detection accuracy for graspable, temporarily ungraspable, and ungraspable apples, respectively.ResultsExperimental results indicate that the improved YOLOv5s model performs exceptionally well, achieving detection accuracies of 94.78%, 93.86%, and 94.98% for APGA, APTUGA, and APUGA, respectively.DiscussionCompared to current lightweight network models such as YOLOX-s and YOLOv7s, our proposed method demonstrates significant advantages across multiple evaluation metrics. In future research, we intend to integrate fruit posture and occlusion detection to f]urther enhance the visual perception capabilities of apple-picking equipment.

Details

Language :
English
ISSN :
1664462X
Volume :
14
Database :
Directory of Open Access Journals
Journal :
Frontiers in Plant Science
Publication Type :
Academic Journal
Accession number :
edsdoj.73bc932cb5184929beef9ddefb281412
Document Type :
article
Full Text :
https://doi.org/10.3389/fpls.2023.1323453