Back to Search Start Over

Activation of nano-photosensitizers by Y-90 microspheres to enhance oxidative stress and cell death in hepatocellular carcinoma

Authors :
Christopher D. Malone
Christopher Egbulefu
Alexander Zheleznyak
Jahnavi Polina
Partha Karmakar
Kvar Black
Monica Shokeen
Samuel Achilefu
Source :
Scientific Reports, Vol 12, Iss 1, Pp 1-13 (2022)
Publication Year :
2022
Publisher :
Nature Portfolio, 2022.

Abstract

Abstract While radioembolization with yttrium-90 (Y-90) microspheres is a promising treatment for hepatocellular carcinoma (HCC), lower responses in advanced and high-grade tumors present an urgent need to augment its tumoricidal efficacy. The purpose of this study was to determine whether clinically used Y-90 microspheres activate light-responsive nano-photosensitizers to enhance hepatocellular carcinoma (HCC) cell oxidative stress and cytotoxicity over Y-90 alone in vitro. Singlet oxygen and hydroxyl radical production was enhanced when Y-90 microspheres were in the presence of several nano-photosensitizers compared to either alone in cell-free conditions. Both the SNU-387 and HepG2 human HCC cells demonstrated significantly lower viability when treated with low activity Y-90 microspheres (0.1–0.2 MBq/0.2 mL) and a nano-photosensitizer consisting of both titanium dioxide (TiO2) and titanocene (TC) labelled with transferrin (TiO2-Tf-TC) compared to Y-90 microspheres alone or untreated cells. Cellular oxidative stress and cell death demonstrated a linear dependence on Y-90 at higher activities (up to 0.75 MBq/0.2 mL), but was significantly more accentuated in the presence of increasing TiO2-Tf-TC concentrations in the poorly differentiated SNU-387 HCC cell line (p

Subjects

Subjects :
Medicine
Science

Details

Language :
English
ISSN :
20452322
Volume :
12
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Scientific Reports
Publication Type :
Academic Journal
Accession number :
edsdoj.73aca9c12ca34d7a9b39b387c0696096
Document Type :
article
Full Text :
https://doi.org/10.1038/s41598-022-17185-0