Back to Search
Start Over
Models and explanatory variables in modelling failure for drinking water pipes to support asset management: a mixed literature review
- Source :
- Applied Water Science, Vol 13, Iss 11, Pp 1-41 (2023)
- Publication Year :
- 2023
- Publisher :
- SpringerOpen, 2023.
-
Abstract
- Abstract There is an increasing demand to enhance infrastructure asset management within the drinking water sector. A key factor for achieving this is improving the accuracy of pipe failure prediction models. Machine learning-based models have emerged as a powerful tool in enhancing the predictive capabilities of water distribution network models. Extensive research has been conducted to explore the role of explanatory variables in optimizing model outputs. However, the underlying mechanisms of incorporating explanatory variable data into the models still need to be better understood. This review aims to expand our understanding of explanatory variables and their relationship with existing models through a comprehensive investigation of the explanatory variables employed in models over the past 15 years. The review underscores the importance of obtaining a substantial and reliable dataset directly from Water Utilities databases. Only with a sizeable dataset containing high-quality data can we better understand how all the variables interact, a crucial prerequisite before assessing the performance of pipe failure rate prediction models.
Details
- Language :
- English
- ISSN :
- 21905487 and 21905495
- Volume :
- 13
- Issue :
- 11
- Database :
- Directory of Open Access Journals
- Journal :
- Applied Water Science
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.7375bdc20d42419bbefe9b53d66e632e
- Document Type :
- article
- Full Text :
- https://doi.org/10.1007/s13201-023-02013-1