Back to Search
Start Over
Sparse Parameter Estimation and Imaging in mmWave MIMO Radar Systems With Multiple Stationary and Mobile Targets
- Source :
- IEEE Access, Vol 10, Pp 132836-132852 (2022)
- Publication Year :
- 2022
- Publisher :
- IEEE, 2022.
-
Abstract
- This work conceives novel target detection and parameter estimation schemes in millimeter-wave (mmWave) multiple-input multiple-output (MIMO) radar (mMR) systems for both stationary and mobile targets/radar platform. Initially, the orthogonal matching pursuit (OMP)-based mmR (OmMR) algorithm is proposed for stationary targets to estimate their radar cross-section (RCS) coefficients, angle, range locations together with the number of targets. Next, mMR systems with mobile targets and platform are considered, followed by development of the simultaneous OMP (SOMP)-based mMR (SmMR) algorithm for RCS, angle/range estimation together with their Doppler velocities. The proposed algorithms lead to a significant improvement in performance since they exploit the inherent sparsity of the mMR scattering scene in contrast to the conventional schemes. Two-dimensional (2D) mMR imaging procedures are also presented for both scenarios in the angle, range, and Doppler dimensions. Analytical expressions are derived for the Cramér-Rao bounds (CRBs) for the mean-squared error (MSE) of joint estimation of the RCS coefficients and Doppler velocities. Simulation results demonstrate that proposed schemes perform well even in low signal-to-noise ratio (SNR) scenarios with a few snapshots of the scattering environment and yield improved performance in comparison to existing sparse as well as non-sparse schemes.
Details
- Language :
- English
- ISSN :
- 21693536
- Volume :
- 10
- Database :
- Directory of Open Access Journals
- Journal :
- IEEE Access
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.736c058a684cdaa603c1e88392cd22
- Document Type :
- article
- Full Text :
- https://doi.org/10.1109/ACCESS.2022.3230988