Back to Search Start Over

Numerical and Experimental Investigation of a Velocity Compounded Radial Re-Entry Turbine for Small-Scale Waste Heat Recovery

Authors :
Andreas P. Weiß
Dominik Stümpfl
Philipp Streit
Patrick Shoemaker
Thomas Hildebrandt
Source :
Energies, Vol 15, Iss 1, p 245 (2021)
Publication Year :
2021
Publisher :
MDPI AG, 2021.

Abstract

The energy industry must change dramatically in order to reduce CO2-emissions and to slow down climate change. Germany, for example, decided to shut down all large nuclear (2022) and fossil thermal power plants by 2038. Power generation will then rely on fluctuating renewables such as wind power and solar. However, thermal power plants will still play a role with respect to waste incineration, biomass, exploitation of geothermal wells, concentrated solar power (CSP), power-to-heat-to-power plants (P2H2P), and of course waste heat recovery (WHR). While the multistage axial turbine has prevailed for the last hundred years in power plants of the several hundred MW class, this architecture is certainly not the appropriate solution for small-scale waste heat recovery below 1 MW or even below 100 kW. Simpler, cost-effective turbo generators are required. Therefore, the authors examine uncommon turbine architectures that are known per se but were abandoned when power plants grew due to their poor efficiency compared to the multistage axial machines. One of these concepts is the so-called Elektra turbine, a velocity compounded radial re-entry turbine. The paper describes the concept of the Elektra turbine in comparison to other turbine concepts, especially other velocity compounded turbines, such as the Curtis type. In the second part, the 1D design and 3D computational fluid dynamics (CFD) optimization of the 5 kW air turbine demonstrator is explained. Finally, experimentally determined efficiency characteristics of various early versions of the Elektra are presented, compared, and critically discussed regarding the originally defined design approach. The unsteady CFD calculation of the final Elektra version promised 49.4% total-to-static isentropic efficiency, whereas the experiments confirmed 44.5%.

Details

Language :
English
ISSN :
19961073
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Energies
Publication Type :
Academic Journal
Accession number :
edsdoj.73634e1c07cb42b89b93d5db114395ec
Document Type :
article
Full Text :
https://doi.org/10.3390/en15010245