Back to Search
Start Over
Label-Free SERS Analysis of Serum Using Ag NPs/Cellulose Nanocrystal/Graphene Oxide Nanocomposite Film Substrate in Screening Colon Cancer
- Source :
- Nanomaterials, Vol 13, Iss 2, p 334 (2023)
- Publication Year :
- 2023
- Publisher :
- MDPI AG, 2023.
-
Abstract
- Label-free surface-enhanced Raman scattering (SERS) analysis shows tremendous potential for the early diagnosis and screening of colon cancer, owing to the advantage of being noninvasive and sensitive. As a clinical diagnostic tool, however, the reproducibility of analytical methods is a priority. Herein, we successfully fabricated Ag NPs/cellulose nanocrystals/graphene oxide (Ag NPs/CNC/GO) nanocomposite film as a uniform SERS active substrate for label-free SERS analysis of clinical serum. The Ag NPs/CNC/GO suspensions by self-assembling GO into CNC solution through in-situ reduction method. Furthermore, we spin-coated the prepared suspensions on the bacterial cellulose membrane (BCM) to form Ag NPs/CNC/GO nanocomposite film. The nanofilm showed excellent sensitivity (LOD = 30 nM) and uniformity (RSD = 14.2%) for Nile Blue A detection. With a proof-of-concept demonstration for the label-free analysis of serum, the nanofilm combined with the principal component analysis-linear discriminant analysis (PCA-LDA) model can be effectively employed for colon cancer screening. The results showed that our model had an overall prediction accuracy of 84.1% for colon cancer (n = 28) and the normal (n = 28), and the specificity and sensitivity were 89.3% and 71.4%, respectively. This study indicated that label-free serum SERS analysis based on Ag NPs/CNC/GO nanocomposite film combined with machine learning holds promise for the early diagnosis of colon cancer.
- Subjects :
- graphene oxide
label-free
PCA-LDA
colon cancer
SERS
Chemistry
QD1-999
Subjects
Details
- Language :
- English
- ISSN :
- 20794991
- Volume :
- 13
- Issue :
- 2
- Database :
- Directory of Open Access Journals
- Journal :
- Nanomaterials
- Publication Type :
- Academic Journal
- Accession number :
- edsdoj.73469c1091dd4dd6aaea065943c8d8e0
- Document Type :
- article
- Full Text :
- https://doi.org/10.3390/nano13020334