Back to Search Start Over

The solvation shell probed by resonant intermolecular Coulombic decay

Authors :
Rémi Dupuy
Tillmann Buttersack
Florian Trinter
Clemens Richter
Shirin Gholami
Olle Björneholm
Uwe Hergenhahn
Bernd Winter
Hendrik Bluhm
Source :
Nature Communications, Vol 15, Iss 1, Pp 1-8 (2024)
Publication Year :
2024
Publisher :
Nature Portfolio, 2024.

Abstract

Abstract Molecules involved in solvation shells have properties differing from those of the bulk solvent, which can in turn affect reactivity. Among key properties of these molecules are their nature and electronic structure. Widely used tools to characterize this type of property are X-ray-based spectroscopies, which, however, usually lack the capability to selectively probe the solvation-shell molecules. A class of X-ray triggered “non-local” processes has the recognized potential to provide this selectivity. Intermolecular Coulombic decay (ICD) and related processes involve neighbouring molecules in the decay of the X-ray-excited target, and are thus naturally sensitive to its immediate environment. Applying electron spectroscopy to aqueous solutions, we explore the resonant flavours of ICD and demonstrate how it can inform on the first solvation shell of excited solvated cations. One particular ICD process turns out to be a potent marker of the formation of ion pairs. Another gives a direct access to the electron binding energies of the water molecules in the first solvation shell, a quantity previously elusive to direct measurements. The resonant nature of the processes makes them readily measurable, providing powerful new spectroscopic tools.

Subjects

Subjects :
Science

Details

Language :
English
ISSN :
20411723
Volume :
15
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Nature Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.73145ea562345609e408b16e9a009fe
Document Type :
article
Full Text :
https://doi.org/10.1038/s41467-024-51417-3