Back to Search Start Over

Effect of Chitin Nanocrystal Deacetylation on a Nature-Mimicking Interface in Carbon Fiber Composites

Authors :
Abdellatif M. Abdel-Mohsen
Rasha M. Abdel-Rahman
Lukáš Kalina
Vishakha Vishakha
Ludmila Kaprálková
Pavel Němeček
Josef Jančář
Ivan Kelnar
Source :
Journal of Composites Science, Vol 8, Iss 5, p 163 (2024)
Publication Year :
2024
Publisher :
MDPI AG, 2024.

Abstract

The formation of a rigid, tough interface based on a nacre-like structure in carbon fiber (CF) composites is a promising way to eliminate low delamination resistance. An effective method of coating CFs is electrophoretic deposition (EPD), which, in the case of dissimilar components like graphene oxide (GO) and polymeric glue, usually requires chemical bonding/strong interactions. In this work, we focus on chitin nanocrystals (ChNCs), leading to an excellent mechanical performance of artificial nacre, where favorable interactions and bonding with GO are controlled by degrees of deacetylation (5, 15, and 30%). We prepared coatings based on GO/ChNC adducts with 95/5, 90/10, 50/50, and 25/75 ratios using optimized EPD conditions (pH, concentration, voltage, and time). The prepared materials were characterized using FTIR, TEM, XPS, SEM, DLS, and XRD. SEM evaluation indicates the formation of a homogeneous interlayer, which has a fair potential for chemical bonding with the epoxy matrix. Short-beam testing of epoxy matrix composites indicates that the coating does not decrease stiffness and has a relatively low dependence on composition. Therefore, all coatings are promising for a detailed study of delamination resistance using laminate samples. Moreover, facile EPD from the water solution/suspension has a fair potential for industrial applications.

Details

Language :
English
ISSN :
2504477X
Volume :
8
Issue :
5
Database :
Directory of Open Access Journals
Journal :
Journal of Composites Science
Publication Type :
Academic Journal
Accession number :
edsdoj.7310dceb04b4df58fa41be26ff03c06
Document Type :
article
Full Text :
https://doi.org/10.3390/jcs8050163