Back to Search Start Over

Pairing, waltzing and scattering of chemotactic active colloids

Authors :
Suropriya Saha
Sriram Ramaswamy
Ramin Golestanian
Source :
New Journal of Physics, Vol 21, Iss 6, p 063006 (2019)
Publication Year :
2019
Publisher :
IOP Publishing, 2019.

Abstract

We study theoretically an active colloid whose polar axis of self-propulsion rotates to point parallel (antiparallel) to an imposed chemical gradient. We show that the coupling of this ‘chemotactic’ (‘antichemotactic’) response to phoretic translational motion yields remarkable two-particle dynamics reflecting the non-central and non-reciprocal character of the interaction. A pair of mutually chemotactic colloids trap each other in a final state of fixed separation resulting in a self-propelled active dimer. A second type of bound state is observed when the polar axes undergo periodic cycles leading to phase-locked circular motion around a common centre. A pair of swimmers with mismatched phoretic mobilities execute a dance in which they twirl around one another while moving jointly in a wide circle. For sufficiently small initial separation, the speed of self-propulsion controls the transition from bound to scattering states. Mutually anti-chemotactic swimmers always scatter apart. For the special case in which one of the two colloids has uniform surface activity we succeed in exactly classifying the fixed points underlying the bound states, and identify the bifurcations leading to transitions from one type of bound state to another. The varied dynamical behaviours are accessible by tuning the swimmer design and are summarised in state diagrams.

Details

Language :
English
ISSN :
13672630
Volume :
21
Issue :
6
Database :
Directory of Open Access Journals
Journal :
New Journal of Physics
Publication Type :
Academic Journal
Accession number :
edsdoj.72b0af4b3a4f465e9956270abd513540
Document Type :
article
Full Text :
https://doi.org/10.1088/1367-2630/ab20fd