Back to Search Start Over

Analysis of genes (TMEM106B, GRN, ABCC9, KCNMB2, and APOE) implicated in risk for LATE-NC and hippocampal sclerosis provides pathogenetic insights: a retrospective genetic association study

Authors :
Adam J. Dugan
Peter T. Nelson
Yuriko Katsumata
Lincoln M. P. Shade
Kevin L. Boehme
Merilee A. Teylan
Matthew D. Cykowski
Shubhabrata Mukherjee
John S. K. Kauwe
Timothy J. Hohman
Julie A. Schneider
Alzheimer’s Disease Genetics Consortium
David W. Fardo
Source :
Acta Neuropathologica Communications, Vol 9, Iss 1, Pp 1-18 (2021)
Publication Year :
2021
Publisher :
BMC, 2021.

Abstract

Abstract Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is the most prevalent subtype of TDP-43 proteinopathy, affecting up to 1/3rd of aged persons. LATE-NC often co-occurs with hippocampal sclerosis (HS) pathology. It is currently unknown why some individuals with LATE-NC develop HS while others do not, but genetics may play a role. Previous studies found associations between LATE-NC phenotypes and specific genes: TMEM106B, GRN, ABCC9, KCNMB2, and APOE. Data from research participants with genomic and autopsy measures from the National Alzheimer’s Coordinating Center (NACC; n = 631 subjects included) and the Religious Orders Study and Memory and the Rush Aging Project (ROSMAP; n = 780 included) were analyzed in the current study. Our goals were to reevaluate disease-associated genetic variants using newly collected data and to query whether the specific genotype/phenotype associations could provide new insights into disease-driving pathways. Research subjects included in prior LATE/HS genome-wide association studies (GWAS) were excluded. Single nucleotide variants (SNVs) within 10 kb of TMEM106B, GRN, ABCC9, KCNMB2, and APOE were tested for association with HS and LATE-NC, and separately for Alzheimer’s pathologies, i.e. amyloid plaques and neurofibrillary tangles. Significantly associated SNVs were identified. When results were meta-analyzed, TMEM106B, GRN, and APOE had significant gene-based associations with both LATE and HS, whereas ABCC9 had significant associations with HS only. In a sensitivity analysis limited to LATE-NC + cases, ABCC9 variants were again associated with HS. By contrast, the associations of TMEM106B, GRN, and APOE with HS were attenuated when adjusting for TDP-43 proteinopathy, indicating that these genes may be associated primarily with TDP-43 proteinopathy. None of these genes except APOE appeared to be associated with Alzheimer’s-type pathology. In summary, using data not included in prior studies of LATE or HS genomics, we replicated several previously reported gene-based associations and found novel evidence that specific risk alleles can differentially affect LATE-NC and HS.

Details

Language :
English
ISSN :
20515960
Volume :
9
Issue :
1
Database :
Directory of Open Access Journals
Journal :
Acta Neuropathologica Communications
Publication Type :
Academic Journal
Accession number :
edsdoj.72aff6c422274975afc0f86f16c43120
Document Type :
article
Full Text :
https://doi.org/10.1186/s40478-021-01250-2